

High Frequency and High Speed Connector Design for 5G Applications

Rung-Bin Hsu, Yu-Cheng Huang, Chia-Che Lee, Ming-Hao Hsieh, **Chang-Fa Yang**, Chen-Pang Chao Department of Electrical Engineering
National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan

Shih-Chieh Chen, Jaisy Kung Harumoto Giken Co., Ltd, Taipei, Taiwan

• This work was supported in parts by Harumoto Giken Co.

High Frequency Connector Design

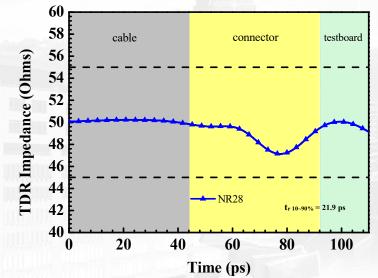
- One of the critical issues at mmWave frequencies is significant loss.
- A rotary type RF wire-to-board connector with an ultra-low loss cable is designed to provide low-loss jump wire solutions with a bandwidth from DC to 45GHz.

RF Jump Wire Applications

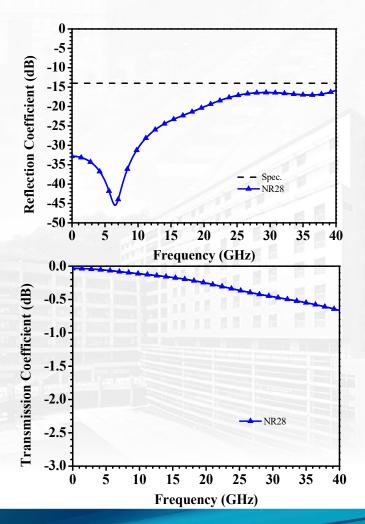
This rotary RF jump wire may provide ultra-low loss connection solutions for 5G mobile and base station devices, radar systems, satellite modules, etc.

work-Will-I-be-able-to-have-service-and-wifi-anywhere



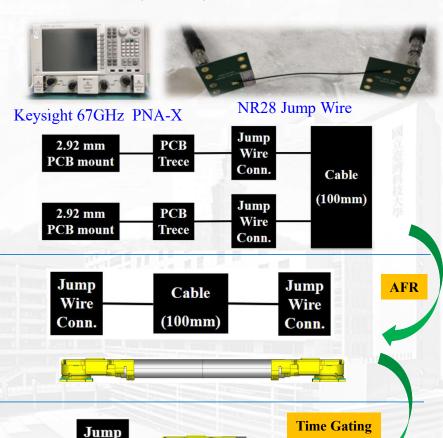


NR28 Rotary Wire-to-Board RF Connector



Simulated NR28 jump wire connectors

> NR28 RF jump wire for Ka band applications.


Jump Wire Measurements (1/2)

• Measurements of the jump wire:

Step 1 – Measure with 67GHz Network Analyzer

✓ Include a pair of the NR28 RF connectors with the PCB, a pair of the 2.92mm PCB mount connectors and a 10cm long cable with an outer diameter of 0.81mm.

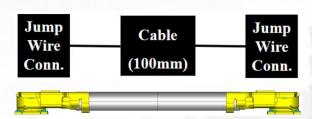
Wire

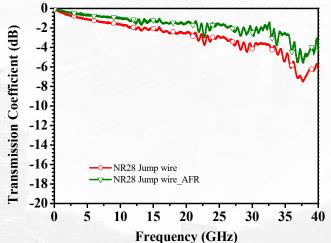
Conn

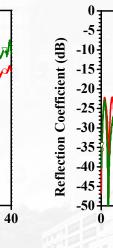
Step 2 – Process with PLTS AFR

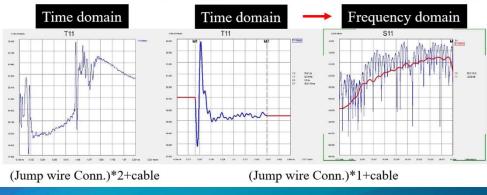
✓ Use Keysight PLTS Automatic Fixture Removal (AFR) to remove the effects of the test boards and 2.92mm PCB mount connectors.

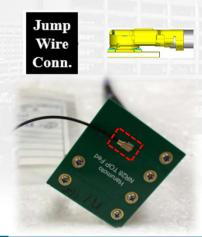
Step 3 – Process with PLTS Time Gating


✓ Apply Keysight PLTS Time Gating to extract results for a single RF connector.




Jump Wire Measurements (2/2)

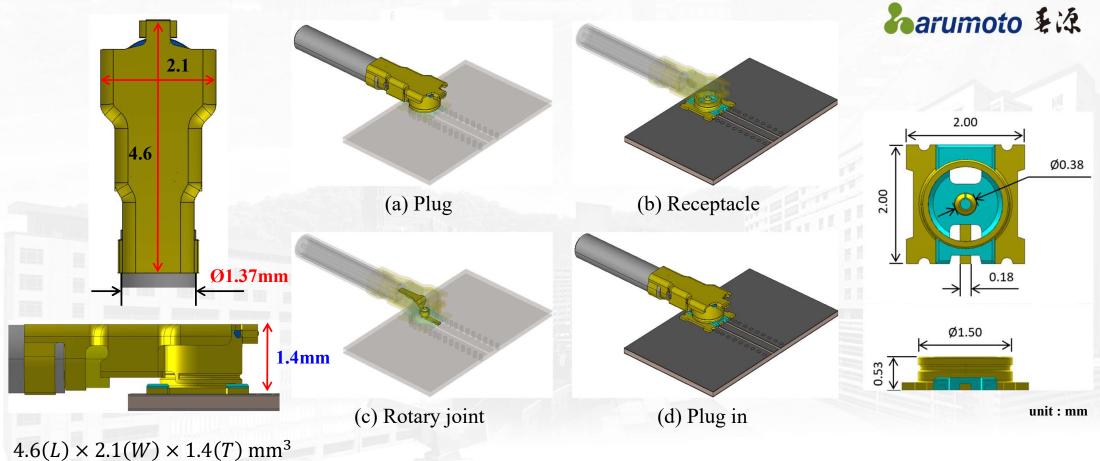




• NR28 jump wire with a 10cm long cable having an outer diameter of 0.81mm.

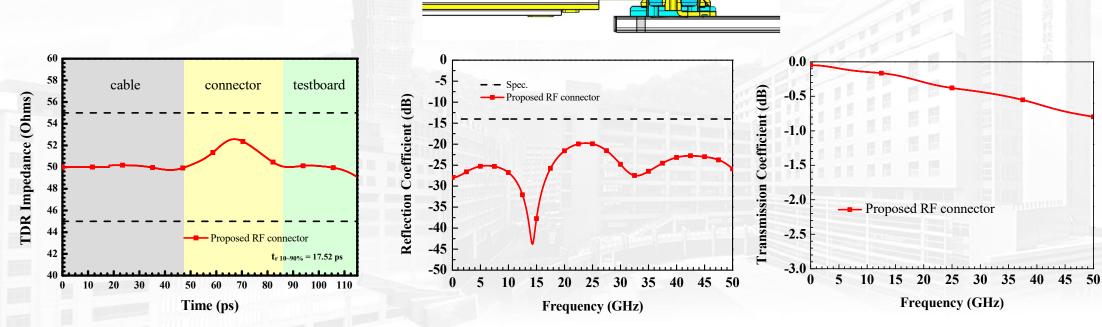
NR28 Jump wire

NR28 Jump wire AFR



Time Gating

RFIT NR45 Rotary Wire-to-Board RF Connector (1/2)

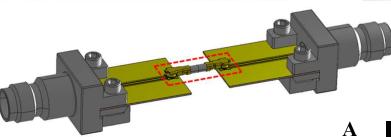


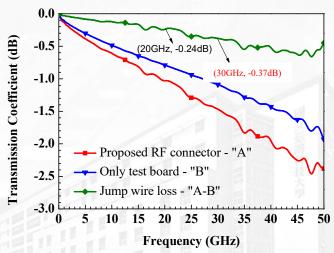
NR45 Rotary Wire-to-Board RF Connector (2/2)

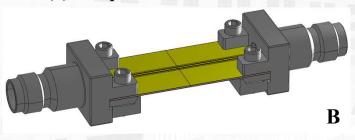
• Simulated TDR impedance, reflection and transmission coefficients of the RF connector

Input signal

%arumoto ≨滚






✓ Path Loss

 $\approx Conn.Loss(dB) +$ $Cable Loss(dB/cm) \times Length(cm)$

(a) Jump wire with a test board

(b) Only the test board

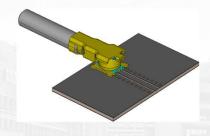
OD1.37mm Cable Loss			
Frequency	Measured Insertion Loss		
10 GHz	0.040 dB/cm		
20 GHz	0.057 dB/cm		
26.5 GHz	0.069 dB/cm		
30 GHz	0.073 dB/cm		
35 GHz	0.082 dB/cm		
40 GHz	0.088 dB/cm		
45 GHz	0.096 dB/cm		
50 GHz	0.102 dB/cm		

Connection	20 GHz	30 GHz	
NR45 Jump Wire (Simulations)	0.81 dB/10cm	1.10 dB/10cm	
Stripline (Simulations)	1.83 dB/10cm	2.44 dB/10cm	
Microstrip Line with ENIG (Measurements) [3]	4.18 dB/10cm	5.41 dB/10cm	
GCPW with ENIG (Measurements) [3]	6.02 dB/10cm	7.75 dB/10cm	

RF Connectors for

mmWave and Sub-Terahertz Applications

Connector Type		Frequency	Note
	NR15/28/45 Rotary Type RF Connectors	25/40/60GHz	Mating Height = 1.40mm
	NR80 Rotary Type RF Connector		Mating Height = 1.00mm
magic Cur	C100 Clamshell Type RF Connector	67/100GHz	Mating Height = 0.70mm
	NR150 RF Connector	150GHz	Mating Height = 0.70mm
	RF WTB Connector P0.35 / H1.6mm	20~67GHz	Working Space 4.4x5.3x1.6 Mating High = 1.7mm
	RF Probe	45/90GHz	For RF PCBA Tester
	2.92/2.4/1.85/1.0mm End-Launch Connectors	40/50/67/110GHz	Robust, Reusable and Repairable



ACKNOWLEDGEMENTS

- The ultra-low loss rotary type RF wire-to-board connector design was was supported in parts by Harumoto Giken Co., Taipei, Taiwan.
- 本報告僅保留春源部分,他廠的篇幅由於未獲得發表許可,故予以刪除。

Thank You

